Mechanochemical carbon dioxide capture and conversion


  • Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mac Dowell, N., Fennell, P. S., Shah, N. & Maitland, G. C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Chang. 7, 243–249 (2017).

    Article 

    Google Scholar
     

  • Kang, Z., Liao, Q., Zhang, Z. & Zhang, Y. Carbon neutrality orientates the reform of the steel industry. Nat. Mater. 21, 1094–1098 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, T. H. et al. Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction. Nat. Catal. 3, 1034–1043 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fan, M. et al. Single-site decorated copper enables energy- and carbon-efficient CO2 methanation in acidic conditions. Nat. Commun. 14, 3314 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tébar-Soler, C. et al. Low-oxidation-state Ru sites stabilized in carbon-doped RuO2 with low-temperature CO2 activation to yield methane. Nat. Mater. 22, 762–768 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kang, H. et al. Understanding the complexity in bridging thermal and electrocatalytic methanation of CO2. Chem. Soc. Rev. 52, 3627–3662 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, H. et al. Light-driven CO2 methanation over Au-grafted Ce0.95Ru0.05O2 solid-solution catalysts with activities approaching the thermodynamic limit. Nat. Catal. 6, 519–530 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 3, 411–417 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Song, Y. et al. Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO. Science 367, 777–781 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beaumont, S. K. et al. Combining in situ NEXAFS spectroscopy and CO2 methanation kinetics to study Pt and Co nanoparticle catalysts reveals key insights into the role of platinum in promoted cobalt catalysis. J. Am. Chem. Soc. 136, 9898–9901 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vogt, C., Monai, M., Kramer, G. J. & Weckhuysen, B. M. The renaissance of the Sabatier reaction and its applications on earth and in space. Nat. Catal. 2, 188–197 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, X. et al. Supercharged CO2 photothermal catalytic methanation: high conversion, rate, and selectivity. Angew. Chem. Int. Ed. 62, e202218694 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ahmad, F. et al. Low-temperature CO2 methanation: synergistic effects in plasma-Ni hybrid catalytic system. ACS Sustain. Chem. Eng. 8, 1888–1898 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Promoting CO2 methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. Nat. Commun. 11, 6190 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, G.-F. et al. Mechanochemistry for ammonia synthesis under mild conditions. Nat. Nanotechnol. 16, 325–330 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reichle, S., Felderhoff, M. & Schuth, F. Mechanocatalytic room-temperature synthesis of ammonia from its elements down to atmospheric pressure. Angew. Chem. Int. Ed. 60, 26385–26389 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Han, G.-F. et al. Extreme enhancement of carbon hydrogasification via mechanochemistry. Angew. Chem. Int. Ed. 61, e202117851 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Eckert, R., Felderhoff, M. & Schüth, F. Preferential carbon monoxide oxidation over copper-based catalysts under in-situ ball milling. Angew. Chem. Int. Ed. 56, 2445–2448 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Amrute, A. P., Łodziana, Z., Schreyer, H., Weidenthaler, C. & Schüth, F. High-surface-area corundum by mechanochemically induced phase transformation of boehmite. Science 366, 485–489 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zholdassov, Y. S. et al. Acceleration of Diels–Alder reactions by mechanical distortion. Science 380, 1053–1058 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Deforming lanthanum trihydride for superionic conduction. Nature 616, 73–76 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khajavi, S., Rajabi, M. & Huot, J. Effect of cold rolling and ball milling on first hydrogenation of Ti0.5Zr0.5 (Mn1-xFex) Cr1, x=0, 0.2, 0.4. J. Alloy. Compd. 775, 912–920 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Han, G.-F. et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 17, 403–407 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sullivan, I. et al. Coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 4, 952–958 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Duyar, M. S., Treviño, M. A. A. & Farrauto, R. J. Dual function materials for CO2 capture and conversion using renewable H2. Appl. Catal. B 168–169, 370–376 (2015).

    Article 

    Google Scholar
     

  • Espinal, L., Poster, D. L., Wong-Ng, W., Allen, A. J. & Green, M. L. Measurement, standards, and data needs for CO2 capture materials: a critical review. Environ. Sci. Technol. 47, 11960–11975 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q., Luo, J., Zhong, Z. & Borgna, A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4, 42–55 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Mazheika, A. et al. Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides. Nat. Commun. 13, 419 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ndayiragije, S. et al. Mechanochemically tailoring oxygen vacancies of MnO2 for efficient degradation of tetrabromobisphenol A with peroxymonosulfate. Appl. Catal. B 307, 121168 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jia, X., Zhang, X., Rui, N., Hu, X. & Liu, C.-j Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Appl. Catal. B 244, 159–169 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wei, X. et al. Oxygen vacancy-mediated selective C–N coupling toward electrocatalytic urea synthesis. J. Am. Chem. Soc. 144, 11530–11535 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Enhanced visible-light photocatalytic activity of carbonate-doped anatase TiO2 based on the electron-withdrawing bidentate carboxylate linkage. Appl. Catal. B 202, 642–652 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Belgamwar, R. et al. Defects tune the strong metal–support interactions in copper supported on defected titanium dioxide catalysts for CO2 reduction. J. Am. Chem. Soc. 145, 8634–8646 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Han, G.-F. et al. Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering. Sci. Adv. 5, eaax8275 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, J., Zeng, F., Mebrahtu, C. & Palkovits, R. Understanding promotional effects of trace oxygen in CO2 methanation over Ni/ZrO2 catalysts. J. Catal. 405, 385–390 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, M. et al. Vacancy engineering of the nickel-based catalysts for enhanced CO2 methanation. Appl. Catal. B 282, 119561 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Westermann, A. et al. Insight into CO2 methanation mechanism over NiUSY zeolites: an operando IR study. Appl. Catal. B 174–175, 120–125 (2015).

    Article 

    Google Scholar
     

  • Pan, Q., Peng, J., Sun, T., Wang, S. & Wang, S. Insight into the reaction route of CO2 methanation: promotion effect of medium basic sites. Catal. Commun. 45, 74–78 (2014).

    Article 

    Google Scholar
     

  • Baláž, P. Mechanochemistry in Nanoscience and Minerals Engineering (Springer, 2008).

  • Lee, T. H. & Elliott, S. R. Ab initio computer simulation of the early stages of crystallization: application to Ge2Sb2Te5 phase-change materials. Phys. Rev. Lett. 107, 145702 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17980 (1994).

    Article 

    Google Scholar
     

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moellmann, J. & Grimme, S. DFT-D3 study of some molecular crystals. J. Phys. Chem. C 118, 7615–7621 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *