Nanodiamond: a multifaceted exploration of electrospun nanofibers for antibacterial and wound healing applications | Journal of Nanobiotechnology


  • Hyder A, Ali A, Buledi JA, Memon AA, Iqbal M, Bangalni TH, Solangi AR, Thebo KH. Akhtar, nanodiamonds: A Cutting-Edge approach to enhancing biomedical therapies and diagnostics in biosensing. Chem Record. 2024;24(4):e202400006.

    Article 
    CAS 

    Google Scholar
     

  • Alexander E, Leong KW. Nanodiamonds in biomedical research: therapeutic applications and beyond. PNAS Nexus. 2024;3(5):198

  • Lee JH, Loh ND, Yeo ZY, Ong YK, Balakrishnan D, Limpo CMA, et al. Engineering a hierarchy of disorder: A new route to synthesize High-Performance 3D nanoporous All‐Carbon materials. Adv Mater. 2024;36(32):2402628. https://doi.org/10.1002/adma.202402628

  • Jariwala DH, Patel D, Wairkar S. Surface functionalization of nanodiamonds for biomedical applications. Mater Sci Engineering: C. 2020;113:110996.

    Article 
    CAS 

    Google Scholar
     

  • Barzegar Amiri Olia M, Donnelly PS, Hollenberg LC, Mulvaney P, Simpson DA. Advances in the surface functionalization of nanodiamonds for biological applications: A review. ACS Appl Nano Mater. 2021;4(10):9985–10005.

    Article 
    CAS 

    Google Scholar
     

  • Qin J-X, Yang X-G, Lv C-F, Li Y-Z, Liu K-K, Zang J-H, Yang X, Dong L. Shan, nanodiamonds: synthesis, properties, and applications in nanomedicine. Mater Design. 2021;210:110091.

    Article 
    CAS 

    Google Scholar
     

  • Kausar A. Nanodiamond reinforcement effects in thermosetting matrices—design, functional features and significance. J Macromolecular Sci Part A. 2024;61(10):724–41.

    Article 
    CAS 

    Google Scholar
     

  • Saba T, Saad KSK, Rashid AB. Precise surface engineering: leveraging chemical vapor deposition for enhanced biocompatibility and durability in biomedical implants. Heliyon 10(18) (2024).

  • Adel M, Keyhanvar P, Zare I, Tavangari Z, Akbarzadeh A, Zahmatkeshan M. Nanodiamonds for tissue engineering and regeneration. J Drug Deliv Sci Technol. 2023;90:105130.

    Article 
    CAS 

    Google Scholar
     

  • Ghajarieh A, Habibi S, Talebian A. Biomedical applications of nanofibers. Russ J Appl Chem. 2021;94(7):847–72.

    Article 
    CAS 

    Google Scholar
     

  • Mirhaj M, Tavakoli M, Varshosaz J, Labbaf S, Jafarpour F, Ahmaditabar P, Salehi S, Kazemi N. Platelet rich fibrin containing nanofibrous dressing for wound healing application: fabrication, characterization and biological evaluations. Biomaterials Adv. 2022;134:112541.

    Article 
    CAS 

    Google Scholar
     

  • Mirhaj M, Salehi S, Tavakoli M, Varshosaz J, Labbaf S, Abadi SAM, Haghighi V. Comparison of physical, mechanical and biological effects of leucocyte-PRF and advanced-PRF on polyacrylamide nanofiber wound dressings: in vitro and in vivo evaluations. Biomaterials Adv. 2022;141:213082.

    Article 
    CAS 

    Google Scholar
     

  • Mirhaj M, Varshosaz J, Labbaf S, Emadi R, Seifalian AM, Sharifianjazi F, Tavakoli M. Mupirocin loaded core-shell pluronic-pectin-keratin nanofibers improve human keratinocytes behavior, angiogenic activity and wound healing. Int J Biol Macromol. 2023;253:126700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tavakoli M, Mirhaj M, Salehi S, Varshosaz J, Labbaf S, Golshirazi A, Kazemi N, Haghighi V. Coaxial electrospun angiogenic nanofiber wound dressing containing advanced platelet rich-fibrin. Int J Biol Macromol. 2022;222:1605–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alizadeh M, Salehi S, Tavakoli M, Mirhaj M, Varshosaz J, Kazemi N, Salehi S, Mehrjoo M, Abadi SAM. PDGF and VEGF-releasing bi-layer wound dressing made of sodium tripolyphosphate crosslinked gelatin-sponge layer and a Carrageenan nanofiber layer. Int J Biol Macromol. 2023;233:123491.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirhaj M, Varshosaz J, Nasab PM, Al-Musawi MH, Almajidi YQ, Shahriari-Khalaji M, Tavakoli M, Alizadeh M, Sharifianjazi F, Mehrjoo M, Labbaf S, Sattar M, Esfahani SN. A double-layer cellulose/pectin-soy protein isolate-pomegranate Peel extract micro/nanofiber dressing for acceleration of wound healing. Int J Biol Macromol. 2024;255:128198.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirhaj M, Varshosaz J, Labbaf S, Emadi R, Marcus Seifalian A, Sharifianjazi F. An antibacterial Multi-Layered scaffold fabricated by 3D printing and electrospinning methodologies for skin tissue regeneration. Int J Pharm. 2023;645:123357.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tavakoli M, Mirhaj M, Varshosaz J, Salehi S, Mohanna SM, Salehi S, Haghighi V, Kazemi N, Mehrjoo M, Shahriari-Khalaji M. Asymmetric tri-layer sponge-nanofiber wound dressing containing insulin-like growth factor-1 and multi-walled carbon nanotubes for acceleration of full-thickness wound healing. Biomaterials Adv. 2023;151:213468.

    Article 
    CAS 

    Google Scholar
     

  • Park H, Patil TV, Dutta SD, Lee J, Ganguly K, Randhawa A, Kim H, Lim KT. Extracellular Matrix-Bioinspired anisotropic topographical cues of electrospun nanofibers: a strategy of wound healing through macrophage polarization. Adv Healthc Mater. 2024;13(12):2304114.

  • Karami P, Aktij SA, Khorshidi B, Firouzjaei MD, Asad A, Elliott M, Rahimpour A, Soares JB, Sadrzadeh M. Nanodiamond-decorated thin film composite membranes with antifouling and antibacterial properties. Desalination. 2022;522:115436.

    Article 
    CAS 

    Google Scholar
     

  • Antal TK, Volgusheva AA, Baizhumanov AA, Kukarskikh GP, Mezzi A, Caschera D, Ciasca G, Lambreva MD. Nanodiamond particles reduce oxidative stress induced by Methyl viologen and high light in the green Alga chlamydomonas reinhardtii. Int J Mol Sci. 2023;24(6):5615.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo X, Zhang H, Cao Z, Cai N, Xue Y, Yu F. A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings. Carbohydr Polym. 2016;143:231–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: recent updates on in vivo study and patents. J Pharm Anal. 2020;10(1):1–12.

    Article 
    PubMed 

    Google Scholar
     

  • Kausar A. Carbonaceous nanofillers in polymer matrix, Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications (2022) 23.

  • Li Z, Wang Y, Ma M, Ma H, Hu W, Zhang X, Zhuge Z, Zhang S, Luo K, Gao Y. Ultrastrong conductive in situ composite composed of nanodiamond incoherently embedded in disordered multilayer graphene. Nat Mater. 2023;22(1):42–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thekkedath A, Sridharan K. Nanodiamonds and its applications. Applications and Use of Diamond; 2022.

  • Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim K-H. Nanodiamonds: emerging face of future nanotechnology. Carbon. 2019;143:678–99.

    Article 
    CAS 

    Google Scholar
     

  • Mumtaz M, Hussain N, Salam S, Bilal M. Multifunctional nanodiamonds as emerging platforms for cancer treatment, and targeted delivery of genetic factors and protein medications—a review. J Mater Sci. 2022;57(17):8064–99.

    Article 
    CAS 

    Google Scholar
     

  • Arun Kumar M, Selvaraj SK, Kanniyappan S, Karthikeyan B, Chadha U. Effects of adding nanodiamonds in mechanical properties of jute and Ramie fiber reinforced epoxy composites. Polym Compos. 2024;45:11872.

  • Reina G, Zhao L, Bianco A, Komatsu N. Chemical functionalization of nanodiamonds: opportunities and challenges ahead. Angew Chem Int Ed. 2019;58(50):17918–29.

    Article 
    CAS 

    Google Scholar
     

  • Rao RN, Albaseer SS. Nanomaterials in chromatographic sample preparations, Nanomaterials in Chromatography, Elsevier2018, pp. 201–231.

  • Mochalin V, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nano-enabled Med Appl. 2020;7(1):313–50.

  • Yang N, Yu S, Macpherson JV, Einaga Y, Zhao H, Zhao G, et al. Conductive diamond: synthesis, properties, and electrochemical applications. Chem Soc Rev. 2019;48(1):157–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boey JY, Lee CK, Tay GS. Factors affecting mechanical properties of reinforced bioplastics: a review. Polymers. 2022;14(18):3737.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhattacharyya A, Priya VK, Kim J-h, Khatun MR, Nagarajan R, Noh I. Nanodiamond enhanced mechanical and biological properties of extrudable gelatin hydrogel cross-linked with Tannic acid and ferrous sulphate. Biomaterials Res. 2022;26(1):37.

    Article 
    CAS 

    Google Scholar
     

  • Morimune-Moriya S, Salajkova M, Zhou Q, Nishino T, Berglund LA. Reinforcement effects from nanodiamond in cellulose nanofibril films. Biomacromolecules. 2018;19(7):2423–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adhikari P, Jani PK, Hsiao LC, Rojas OJ, Khan SA. Interfacial contributions in nanodiamond-reinforced polymeric fibers. J Phys Chem B. 2021;125(36):10312–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Junzhuo W, Shijia G, Hui Y, Jianlin L, Lianjun W, Wan J. Robust natural graphite-based bulk graphites with nanodiamond-containing fibrous nanofiller as reinforcement by electrohydrodynamic processing. Ceram Int. 2024;50(13):24387–96.

    Article 

    Google Scholar
     

  • Hinzmann C, Parsons DF, Fiedler J, Zalieckas J, Holst B. Nanodiamond-treated flax: improving properties of natural fibers. Cellulose. 2024;31(1):685–701.

    Article 
    CAS 

    Google Scholar
     

  • Morimune-Moriya S, Yada S, Kuroki N, Ito S, Hashimoto T, Nishino T. Strong reinforcement effects of nanodiamond on mechanical and thermal properties of polyamide 66. Compos Sci Technol. 2020;199:108356.

    Article 
    CAS 

    Google Scholar
     

  • Mostafavi Yazdi SJ, Baqersad J. Mechanical modeling and characterization of human skin: A review. J Biomech. 2022;130:110864.

    Article 
    PubMed 

    Google Scholar
     

  • Mahdavi M, Mahmoudi N, Rezaie Anaran F, Simchi A. Electrospinning of nanodiamond-modified polysaccharide nanofibers with physico-mechanical properties close to natural skins. Mar Drugs. 2016;14(7):128.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai N, Dai Q, Wang Z, Luo X, Xue Y, Yu F. Preparation and properties of nanodiamond/poly(lactic acid) composite nanofiber scaffolds. Fibers Polym. 2014;15(12):2544–52.

    Article 
    CAS 

    Google Scholar
     

  • Pereira F, Salles G, Rodrigues B, Marciano F, Pacheco-Soares C, Lobo A. Diamond nanoparticles into Poly (lactic acid) electrospun fibers: cytocompatible and bioactive scaffolds with enhanced wettability and cell adhesion. Mater Lett. 2016;183:420–4.

    Article 
    CAS 

    Google Scholar
     

  • Carbon D-L, Diamond. Carbon Nanotubes and Graphene for Biomedical Applications, (2019).

  • Mayerhoefer E, Krueger A. Surface control of Nanodiamond: from homogeneous termination to complex functional architectures for biomedical applications. Acc Chem Res. 2022;55(24):3594–604.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kabir II, Osborn JC, Lu W, Mata JP, Rehm C, Yeoh GH, Ersez T. Structure evolution of nanodiamond aggregates: a SANS and USANS study. J Appl Crystallogr. 2022;55(2):353–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor AC, González CH, Miller BS, Edgington RJ, Ferretti P, Jackman RB. Surface functionalisation of nanodiamonds for human neural stem cell adhesion and proliferation. Sci Rep. 2017;7(1):7307.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan M, Hamid A, Tiehu L, Zada A, Attique F, Ahmad N, Ullah A, Hayat A, Mahmood I, Hussain A. Surface optimization of detonation nanodiamonds for the enhanced mechanical properties of polymer/nanodiamond composites. Diam Relat Mater. 2020;107:107897.

    Article 
    CAS 

    Google Scholar
     

  • Elunina K, Kudryashova O, Petrov E, Influence of Ultrasonic Treatment on the Microstructure of Particles of Detonation Synthesis Nanodiamonds, 2021 IEEE 22nd International Conference of Young Professionals in Electron Devices and, Materials. (EDM), IEEE, 2021, pp. 243–246.

  • Turcheniuk K, Mochalin VN. Biomedical applications of nanodiamond. Nanotechnology. 2017;28(25):252001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quan C, Lin H, Xiao H, Zhao J. Inhibitory effect of carboxylated nanodiamond on oral pathogenic bacteria Streptococcus mutans. J Clin Lab Anal. 2021;35(8):e23872.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santacruz-Gomez K, Sarabia-Sainz A, Acosta-Elias M, Sarabia-Sainz M, Janetanakit W, Khosla N, Melendrez R, Montero MP, Lal R. Antioxidant activity of hydrated carboxylated nanodiamonds and its influence on water γ-radiolysis. Nanotechnology. 2018;29(12):125707.

    Article 
    PubMed 

    Google Scholar
     

  • Ashek-I-Ahmed L, Gines S, Mandal C-Y, Song OA, Williams MN, Sarmiento C-L, Cheng. Facile amine termination of nanodiamond particles and their surface reaction dynamics. ACS Omega. 2019;4(16):16715–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mangal U, Seo J-Y, Yu J, Kwon J-S, Choi S-H. Incorporating aminated nanodiamonds to improve the mechanical properties of 3D-printed resin-based biomedical appliances. Nanomaterials. 2020;10(5):827.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao N, Song M, Zhang X, Xu W, Liu X. Nanodiamond Coating in Energy and Engineering Fields: Synthesis Methods, Characteristics, and Applications, Small (2024) 2401292.

  • Ekimov E, Shiryaev AA, Grigoriev Y, Averin A, Shagieva E, Stehlik S, Kondrin M. Size-dependent thermal stability and optical properties of ultra-small nanodiamonds synthesized under high pressure. Nanomaterials. 2022;12(3):351.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu F, Wei C, Yin X, Kang L, Zhu M, Dai B. The effect of sp2 content in carbon on its catalytic activity for acetylene hydrochlorination. Nanomaterials. 2022;12(15):2619.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnault J. Surface modifications of nanodiamonds and current issues for their biomedical applications, Novel aspects of diamond: From growth to applications (2019) 415–460.

  • Li Y, He S, Zhou Z, Zhou S, Huang S, Fane AG, Zheng C, Zhang Y, Zhao S. Carboxylated Nanodiamond-enhanced photocatalytic membranes with improved antifouling and self-cleaning properties. Ind Eng Chem Res. 2020;59(8):3538–49.

    Article 
    CAS 

    Google Scholar
     

  • Yang T-C, Chang C-Y, Yarmishyn AA, Mao Y-S, Yang Y-P, Wang M-L, Hsu C-C, Yang H-Y, Hwang D-K, Chen S-J. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina. Acta Biomater. 2020;101:484–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou Z, Wang Z, Wang P, Chen F, Luo X. Near-infrared light-triggered mild-temperature photothermal effect of nanodiamond with functional groups. Diam Relat Mater. 2022;123:108831.

    Article 
    CAS 

    Google Scholar
     

  • Zandieh M, Liu J, Metal-Mediated DNA. Adsorption on carboxylated, hydroxylated, and hydrogenated nanodiamonds. Langmuir. 2023;39(33):11596–602.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan X, Zhang Y, Zhang Y, Yang M, Yang Z, Liu Y, Zhang P, Han Z, Wang X, Fu Y. Monodispersed nanodiamonds for enhanced anticorrosion of waterborne epoxy coatings. Ind Eng Chem Res. 2023;63(1):307–17.

    Article 

    Google Scholar
     

  • Shuai C, Li Y, Wang G, Yang W, Peng S, Feng P. Surface modification of Nanodiamond: toward the dispersion of reinforced phase in poly-l-lactic acid scaffolds. Int J Biol Macromol. 2019;126:1116–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen Z, Wu J, Fan G. Facile fabrication of rhodium/nanodiamond hybrid as advanced catalyst toward hydrogen production from ammonia–borane. Catalysts. 2020;10(9):1037.

    Article 
    CAS 

    Google Scholar
     

  • Jirásek V, Stehlík Š, Štenclová P, Artemenko A, Rezek B, Kromka A. Hydroxylation and self-assembly of colloidal hydrogenated nanodiamonds by aqueous oxygen radicals from atmospheric pressure plasma jet. RSC Adv. 2018;8(66):37681–92.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kord Forooshani P, Pinnaratip R, Polega E, Tyo AG, Pearson E, Liu B, Folayan T-O, Pan L, Rajachar RM, Heldt CL. Hydroxyl radical generation through the Fenton-like reaction of hematin-and catechol-functionalized microgels. Chem Mater. 2020;32(19):8182–94.

    Article 
    CAS 

    Google Scholar
     

  • Tsuneda T. Fenton reaction mechanism generating no OH radicals in Nafion membrane decomposition. Sci Rep. 2020;10(1):18144.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong H, Wang Q, Qu J, Li X, Mukerabigwi JF, Asibaike L, Fang Y, Cao Y. Dispersion of reduced nanodiamond and its application in lubrication. Mater Today Commun. 2023;37:106999.

    Article 
    CAS 

    Google Scholar
     

  • Lim DG, Kang E, Jeong SH. pH-dependent nanodiamonds enhance the mechanical properties of 3D-printed hyaluronic acid nanocomposite hydrogels. J Nanobiotechnol. 2020;18:1–10.

    Article 

    Google Scholar
     

  • Chi Q, Chen D, Wang X, Zhang C, Zhang T, Wu G, Tang C. Improvement of thermal conductivity properties of epoxy resin by constructing sesame cookie-like nanodiamond‐boron nitride, Polymer Composites.

  • Gulka M, Balasubramanian P, Shagieva E, Copak J, Khun J, Scholtz V, Jelezko F, Stehlik S, Cigler P. Surface optimization of nanodiamonds using non-thermal plasma. Carbon. 2024;224:119062.

    Article 
    CAS 

    Google Scholar
     

  • He Y, Chang Q, Lu F. Oxygen-releasing biomaterials for chronic wounds breathing: from theoretical mechanism to application prospect. Mater Today Bio. 2023;20:100687.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gim G, Haider Z, Suh S-I, Ahn Y-Y, Kim K, Kim E-J, Lee H, Kim H-i, Lee J. Low-temperature hydrogenation of nanodiamond as a strategy to fabricate sp3-hybridized nanocarbon as a high-performance persulfate activator. Appl Catal B. 2022;316:121589.

    Article 
    CAS 

    Google Scholar
     

  • Stehlik S, Szabo O, Shagieva E, Miliaieva D, Kromka A, Nemeckova Z, Henych J, Kozempel J, Ekimov E, Rezek B. Electrical and colloidal properties of hydrogenated nanodiamonds: effects of structure, composition and size. Carbon Trends. 2024;14:100327.

    Article 
    CAS 

    Google Scholar
     

  • Ducrozet F, Brun E, Girard HA, Arnault J-C, Sicard-Roselli C. Milled nanodiamonds overproduce solvated electrons while scavenging hydroxyl radicals under gamma irradiation. J Phys Chem C. 2023;127(39):19544–53.

    Article 
    CAS 

    Google Scholar
     

  • Tang G, Zhang M, Liu Q, Tian X, Mai R. Applications of nanodiamonds in the diagnosis and treatment of neurological diseases. J Nanopart Res. 2022;24(3):55.

    Article 
    CAS 

    Google Scholar
     

  • Kulakova I, Pereyaslavcev AY, Lisichkin G. Regularities of chlorination of the detonation nanodiamond surface. Mosc Univ Chem Bull. 2019;74:246–56.

    Article 

    Google Scholar
     

  • Basso L, Cazzanelli M, Orlandi M, Miotello A. Nanodiamonds: synthesis and application in sensing, catalysis, and the possible connection with some processes occurring in space. Appl Sci. 2020;10(12):4094.

    Article 
    CAS 

    Google Scholar
     

  • Singh D, Ray S. A short appraisal of nanodiamonds in drug delivery and targeting: recent advancements. Front Nanatechnol. 2023;5.

  • Alwani S, Hua Q, Iftikhar S, Appathurai NP, Michel D, Karunakaran C, Badea I. Lysine functionalized nanodiamonds as gene carriers-Investigation of internalization pathways and intracellular trafficking. Diam Relat Mater. 2019;98:107477.

    Article 
    CAS 

    Google Scholar
     

  • Ryu TK, Baek SW, Kang RH, Choi SW. Selective photothermal tumor therapy using nanodiamond-based nanoclusters with folic acid. Adv Funct Mater. 2016;26(35):6428–36.

    Article 
    CAS 

    Google Scholar
     

  • Li A, Wang H, Liu X, Shen W, Fang C, Zhang Z, Zhang Y, Chen L, Wang Q, Wan B, Wang Y, Shan C. Enhanced stability of sodium anodes by amino-functioned macroporous two-dimensional nanodiamond coated polypropylene separators. Chem Eng J. 2024;491:151914.

    Article 
    CAS 

    Google Scholar
     

  • Dey T, Ghosh A, Sanyal A, Charles CJ, Pokharel S, Nair L, Singh M, Kaity S, Ravichandiran V, Kaur K. Surface engineered nanodiamonds: mechanistic intervention in biomedical applications for diagnosis and treatment of cancer. Biomed Mater. 2024;19(3):032003.

    Article 
    CAS 

    Google Scholar
     

  • Jung H-S, Neuman KC. Surface modification of fluorescent nanodiamonds for biological applications. Nanomaterials. 2021;11(1):153.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ekimov E, Lyapin S, Grigoriev YV, Zibrov I, Kondrina K. Size-controllable synthesis of ultrasmall diamonds from halogenated Adamantanes at high static pressure. Carbon. 2019;150:436–8.

    Article 
    CAS 

    Google Scholar
     

  • Ekimov E, Shiryaev A, Sidorov V, Grigoriev Y, Averin A, Kondrin M. Synthesis and properties of nanodiamonds produced by HPHT carbonization of 1-fluoroadamantane. Diam Relat Mater. 2023;136:109907.

    Article 
    CAS 

    Google Scholar
     

  • Zhou J, Laube C, Knolle W, Naumov S, Prager A, Kopinke F-D, Abel B. Efficient Chlorine atom functionalization at nanodiamond surfaces by electron beam irradiation. Diam Relat Mater. 2018;82:150–9.

    Article 
    CAS 

    Google Scholar
     

  • Luo Z, Wan Q, Yu Z, Lin S, Xie Z, Wang X. Photo-fluorination of nanodiamonds catalyzing oxidative dehydrogenation reaction of ethylbenzene. Nat Commun. 2021;12(1):6542.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Chen S, Hou Y. Understanding the thermal conductivity of Diamond/copper composites by first-principles calculations. Carbon. 2019;148:249–57.

    Article 
    CAS 

    Google Scholar
     

  • Matsubara H, Kikugawa G, Bessho T, Ohara T. Evaluation of thermal conductivity and its structural dependence of a single nanodiamond using molecular dynamics simulation. Diam Relat Mater. 2020;102:107669.

    Article 
    CAS 

    Google Scholar
     

  • Song N, Wang P, Cao D, Wang Z, Ding P. Enhanced thermal conductivity of PP hybrid films induced by filler orientation and laminated structure. J Mater Sci. 2022;57(4):2540–9.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Wang W, Zhang F, Huang L, Dai K, Li C, Liu D, Sun Y, Ren D, Wu J. Micro-diamond assisted bidirectional tuning of thermal conductivity in multifunctional graphene nanoplatelets/nanofibrillated cellulose films. Carbon. 2022;189:265–75.

    Article 
    CAS 

    Google Scholar
     

  • Gu T, Sun D-x, Qi X-d, Yang J-h, Zhao C-s, Lei Y-z, Wang Y. Synchronously enhanced thermal conductivity and heat resistance in Poly (l-lactide)/graphene nanoplatelets composites via constructing stereocomplex crystallites at interface. Compos Part B: Eng. 2021;224:109163.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Wang H, Yang X, Zhang X, Ma B. Simple in situ synthesis of SiC nanofibers on graphite felt as a scaffold for improving performance of paraffin-based composite phase change materials. RSC Adv. 2022;12(2):878–87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Tang B, Chen J, Shan L, Gao Y, Yang K, Wang Y, Sun K, Fan R, Yu J. Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks. Compos Sci Technol. 2021;203:108610.

    Article 
    CAS 

    Google Scholar
     

  • Guo Y, Wang S, Ruan K, Zhang H, Gu J. Highly thermally conductive carbon nanotubes pillared exfoliated graphite/polyimide composites. Npj Flex Electron. 2021;5(1):16.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Tian X, Yang W, Li Q, Hou L, Zhu Z, Tang Y, Wang M, Zhang B, Pan T. Dielectric composite reinforced by in-situ growth of carbon nanotubes on Boron nitride nanosheets with high thermal conductivity and mechanical strength. Chem Eng J. 2019;358:718–24.

    Article 
    CAS 

    Google Scholar
     

  • Li C, Yang Z, Zhang X, Ru Y, Gao D, Wu D, Sun J. Ultrasonic-assisted method for the Preparation of carbon nanotube-graphene/polydimethylsiloxane composites with integrated thermal conductivity, electromagnetic interference shielding, and mechanical performances. Int J Mol Sci. 2022;23(23):15007.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Lan M, Li G, Piao Y, Ahmoum H, Wang Q. Breaking the tradeoff among thermoelectric parameters by multi composite of porosity and CNT in AZO films. Energy. 2021;225:120320.

    Article 
    CAS 

    Google Scholar
     

  • Choi M, An J, Lee H, Jang H, Park JH, Cho D, Song JY, Kim SM, Oh M-W, Shin H. High figure-of-merit for ZnO nanostructures by interfacing lowly-oxidized graphene quantum Dots. Nat Commun. 2024;15(1):1996.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sreekumar S, Ganguly A, Khalil S, Chakrabarti S, Hewitt N, Mondol JD, Shah N. Thermo-optical characterization of novel MXene/Carbon-dot hybrid nanofluid for heat transfer applications. J Clean Prod. 2024;434:140395.

    Article 
    CAS 

    Google Scholar
     

  • Wei Z, Gong P, Kong X, Li M, Cheng J, Zhou H, Li D, Ye Y, Lu X, Yu J. Enhanced thermal conductivity of nanodiamond nanosheets/polymer nanofiber composite films by uniaxial and coaxial electrospinning: implications for thermal management of nanodevices. ACS Appl Nano Mater. 2023;6(10):8358–66.

    Article 
    CAS 

    Google Scholar
     

  • Li L, Qin Y, Wang H, Li M, Song G, Wu Y, Wei X, Ali Z, Yi J, Song S. Improving thermal conductivity of Poly (vinyl alcohol) composites by using functionalized nanodiamond. Compos Commun. 2021;23:100596.

    Article 

    Google Scholar
     

  • Gong P, Li L, Fu G-e, Shu S, Li M, Wang Y, Qin Y, Kong X, Chen H, Jiao C. Highly flexible cellulose nanofiber/single-crystal nanodiamond flake heat spreader films for heat dissipation. J Mater Chem C. 2022;10(33):12070–9.

    Article 
    CAS 

    Google Scholar
     

  • Lee JS, Mun JH, Joo S, Lee SU, Kim MI. The thermal conductivity characteristics of carbon block with Nano-Diamond. Appl Chem Eng. 2023;34(6):608–12.


    Google Scholar
     

  • Zhang C, Guo Q, Tong Z, Chen S, Mao Z, Yu Y. Thin film nanoarchitectonics of layer-by-layer assembly with reduced graphene oxide on intraocular lens for photothermal therapy of posterior capsular opacification. J Colloid Interface Sci. 2022;619:348–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou Y, He Q, Wang S, Zou F, Lu X, Sun Z, Li L. Fabrication of graphene oxide/poly (L-lactide-co-ε-caprolactone) nanocomposite with NIR light-induced shape memory effect and antibacterial properties. J Polym Res. 2023;30(6):206.

    Article 
    CAS 

    Google Scholar
     

  • Henriques PC, Pereira AT, Bogas D, Fernandes JR, Pinto AM, Magalhaes FD, Goncalves IC. Graphene films irradiated with safe low-power NIR-emitting diodes kill multidrug resistant bacteria. Carbon. 2021;180:10–21.

    Article 
    CAS 

    Google Scholar
     

  • Shi W, Han Q, Wu J, Ji C, Zhou Y, Li S, Gao L, Leblanc RM, Peng Z. Synthesis mechanisms, structural models, and photothermal therapy applications of top-down carbon Dots from carbon powder, graphite, graphene, and carbon nanotubes. Int J Mol Sci. 2022;23(3):1456.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ovando-Medina VM, Escobar‐Villanueva AG, Martínez‐Gutiérrez H, González‐Ortega O. Interfacial photothermal water evaporator based on nanoporous microwave‐expanded graphite and coconut waste fibers@ recycled polystyrene as substrate. Int J Energy Res. 2020;44(13):10878–93.

    Article 
    CAS 

    Google Scholar
     

  • Cao G, Li Y, Qi Y, Qiao Y, He J, Zhang H, Cui W, Zhou M. NIR-responsible and optically monitored nanoparticles release from electrospinning fibrous matrices. Mater Today Adv. 2020;6:100044.

    Article 

    Google Scholar
     

  • Meng Y, Wang C, Song L, Su Z, Jiang Y, Lian Y, Bai G, Fan Q. Composite films based on Bi2Se3 nanosheets and carbon nanotubes with photothermal and photodynamic functions for synergistic treatment. Mater Design. 2023;233:112201.

    Article 
    CAS 

    Google Scholar
     

  • Chen X, Wang L, Zhang D, Bu N, Liu W, Wu Z, Mu R, Tan P, Zhong Y, Pang J, Enhancing Strawberry Freshness. Multifunction Sustainable Films Utilizing Two Types of Modified Carbon Nanotubes for Photothermal Food Packaging, ACS Applied Materials & Interfaces (2024).

  • Liu Y, Xu B, Lu M, Li S, Guo J, Chen F, Xiong X, Yin Z, Liu H, Zhou D. Ultrasmall Fe-doped carbon Dots nanozymes for photoenhanced antibacterial therapy and wound healing. Bioactive Mater. 2022;12:246–56.

    Article 
    CAS 

    Google Scholar
     

  • Luo Q, Liu P, Fu L, Hu Y, Yang L, Wu W, Kong X-Y, Jiang L, Wen L. Engineered cellulose nanofiber membranes with ultrathin low-dimensional carbon material layers for photothermal-enhanced osmotic energy conversion. ACS Appl Mater Interfaces. 2022;14(11):13223–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu L, Sun W, Tang Y, Li S, Zhang B, Sun X, Ji W, Ma L, Deng H, Han S. Photothermal effect enhancing graphene quantum Dots/semiconducting polymer/nanozyme-mediated cancer catalytic therapy. Carbon. 2021;176:148–56.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Kong J, Zhao H, Liu Y. Synthesis of multi-stimuli responsive Fe3O4 coated with diamonds nanocomposite for magnetic assisted chemo-photothermal therapy. Molecules. 2023;28(4):1784.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang P, Hou Z, Wang Z, Luo X. Multifunctional therapeutic nanodiamond hydrogels for Infected-Wound healing and cancer therapy. ACS Appl Mater Interfaces. 2024;16(8):9656–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahapatra SS, Yadav SK, Lee BH, Cho JW. Nanodiamond-grafted hyperbranched polymers anchored with carbon nanotubes: mechanical, thermal, and photothermal shape-recovery properties. Polymer. 2019;160:204–9.

    Article 
    CAS 

    Google Scholar
     

  • Han M, Sun W, Chen Y, Li H. Fabrication of a photothermal antibacterial platform for bacterial infectious skin wound healing: a review. Mol Syst Des Eng. 2024;9(8):800–13.

    Article 
    CAS 

    Google Scholar
     

  • Liu H, Xing F, Zhou Y, Yu P, Xu J, Luo R, Xiang Z, Maria Rommens P, Liu M, Ritz U. Nanomaterials-based photothermal therapies for antibacterial applications. Mater Design. 2023;233:112231.

    Article 
    CAS 

    Google Scholar
     

  • Parreño RP, Liu Y-L, Beltran AB. Effect on thermal stability of microstructure and morphology of thermally-modified electrospun fibers of polybenzoxazines (PBz) blended with sulfur copolymers (SDIB). RSC Adv. 2021;11(17):10002–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal nanomaterials: A powerful Light-to-Heat converter. Chem Rev. 2023;123(11):6891–952.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Cao W, Su Z, Zhao K, Dai B, Gao G, Zhao J, Zhao K, Wang Z, Sun T. Fabrication of high thermal conductivity Nanodiamond/aramid nanofiber composite films with superior multifunctional properties. ACS Appl Mater Interfaces. 2023;15(22):27130–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song N, Jin Y, Jiao D, Wang Q, Wang Z, Ding P. Hydrophobic nanofiber Cellulose-Graphene films for High-Performance thermal management applications. ACS Appl Nano Mater. 2024;7(5):4742–52.

    Article 
    CAS 

    Google Scholar
     

  • Jiao E, Wu K, Liu Y, Zhang H, Zheng H, Xu C-a, Shi J, Lu M. Nacre-like robust cellulose nanofibers/mxene films with high thermal conductivity and improved electrical insulation by nanodiamond. J Mater Sci. 2022;57(4):2584–96.

    Article 
    CAS 

    Google Scholar
     

  • Song N, Cui S, Hou X, Ding P, Shi L. Significant enhancement of thermal conductivity in nanofibrillated cellulose films with low mass fraction of nanodiamond. ACS Appl Mater Interfaces. 2017;9(46):40766–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terracciano M, Tramontano C, Moretta R, Miranda B, Borbone N, De Stefano L, et al. Protein-modified porous silicon optical devices for biosensing, Porous Silicon for Biomedical Applications, Elsevier. 2021, pp. 113–48.

  • Puntervold T, Strand S, Mamonov A, Piñerez IDT. Enhanced oil recovery by Smart Water injection in sandstone reservoirs, Recovery Improvement, Elsevier2023, pp. 109–184.

  • Siddiqa A, Majid A, Saira F, Farooq S, Qureshi R, Qaisar S. Nanodiamond embedded polyaniline/polyvinylidene fluoride nanocomposites as microfiltration membranes for removal of industrial pollution. RSC Adv. 2023;13(42):29206–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong CCQ, Tomura K, Yamamoto O. Wound healing performance in a moist environment of crystalline glucose/mannose film as a new dressing material using a rat model: comparing with Medical-Grade wound dressing and alginate. Pharmaceuticals. 2023;16(11):1532.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olăreț E, Drăgușin D-M, Serafim A, Lungu A, Șelaru A, Dobranici A, Dinescu S, Costache M, Boerașu I. Vasile, electrospinning fabrication and cytocompatibility investigation of nanodiamond particles-gelatin fibrous tubular scaffolds for nerve regeneration. Polymers. 2021;13(3):407.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narla A, Fu W, Kulaksizoglu A, Kume A, Johnson BR, Raman AS, Wang F, Magasinski A, Kim D, Kousa M. Nanodiamond-Enhanced nanofiber separators for High-Energy Lithium-Ion batteries. ACS Appl Mater Interfaces. 2023;15(27):32678–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Houshyar S, Padhye R, Shanks RA, Nayak R. Nanodiamond fabrication of superhydrophilic wool fabrics. Langmuir. 2019;35(22):7105–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park H, Patil TV, Lee J, Kim H, Cho SJ, Lim KT. NIR-activated catechol-functionalized nanodiamond nanofibers for accelerating on-demand MRSA and E. coli biofilm eradication. J Biol Eng. 2025;19(1):2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Z, Zheng Z, Yu S, Gao Y, Ma J, Huang L, Yang L. Nanofiber Scaffolds as Drug Delivery Syst Promoting Wound Healing Pharm. 2023;15(7):1829.

    CAS 

    Google Scholar
     

  • Zheng Q, Xi Y, Weng Y. Functional electrospun nanofibers: fabrication, properties, and applications in wound-healing process. RSC Adv. 2024;14(5):3359–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajabifar N, Rostami A, Afshar S, Mosallanezhad P, Zarrintaj P, Shahrousvand M, Nazockdast H. Wound dressing with electrospun Core-Shell nanofibers: from material selection to synthesis. Polymers. 2024;16(17):2526.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Li Y, Sheng G. Nanodiamond-Reinforced polyurethane micro/nanofiber membrane for UV protection in multifunctional textiles. ACS Appl Nano Mater. 2024;7(11):12323–33.

  • Jahani M, Asefnejad A, Al-Musawi MH, Mohammed AA, Al-Sudani BT, Hameed Al-bahrani M, Kadhim NA, Shahriari-Khalaji M, Valizadeh H, Sharifianjazi F, Mehrjoo M, Tavamaishvili K, Tavakoli M. Antibacterial and wound healing stimulant nanofibrous dressing consisting of soluplus and soy protein isolate loaded with mupirocin. Sci Rep. 2024;14(1):26397.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neuhoferova E, Kindermann M, Buzgo M, Vocetkova K, Panek D, Cigler P, Benson V. Topical SiRNA therapy of diabetic-like wound healing. J Mater Chem B. 2025;13(3):1037–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, Chow EK-H. Biomedical applications of nanodiamonds: from drug-delivery to diagnostics. SLAS Technol. 2023;28(4):214–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnol. 2022;20(1):262.

    Article 

    Google Scholar
     

  • Qian Y, Cheng Y, Ouyang Y, Yuan W, Fan C. Multilayered spraying and gradient dotting of nanodiamond–polycaprolactone guidance channels for restoration of immune homeostasis. NPG Asia Mater 11 (2019).

  • Ahn GY, Ryu T-K, Choi YR, Park JR, Lee MJ, Choi S-W. Fabrication and optimization of Nanodiamonds-composited Poly (ε-caprolactone) fibrous matrices for potential regeneration of hard tissues. Biomaterials Res. 2018;22(1):16.

    Article 

    Google Scholar
     

  • Cao L, Hou Y, Lafdi K, Urmey K. Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone. Chem Phys Lett. 2015;641:123–8.

    Article 
    CAS 

    Google Scholar
     

  • Price JC, Levett SJ, Radu V, Simpson DA, Barcons AM, Adams CF, Mather ML. Quantum sensing in a Physiological-Like cell niche using fluorescent nanodiamonds embedded in electrospun polymer nanofibers. Small. 2019;15(22):1900455.

    Article 

    Google Scholar
     

  • Brady MA, Renzing A, Douglas TE, Liu Q, Wille S, Parizek M, Bacakova L, Kromka A, Jarosova M, Godier G. Development of composite Poly (lactide-co-glycolide)-nanodiamond scaffolds for bone cell growth. J Nanosci Nanotechnol. 2015;15(2):1060–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Şelaru A, Drăgușin D-M, Olăreț E, Serafim A, Steinmüller-Nethl D, Vasile E, Iovu H, Stancu I-C, Costache M, Dinescu S. Fabrication and biocompatibility evaluation of nanodiamonds-gelatin electrospun materials designed for prospective tissue regeneration applications. Materials. 2019;12(18):2933.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Houshyar S, Sarker A, Jadhav A, Kumar GS, Bhattacharyya A, Nayak R, Shanks RA, Saha T, Rifai A, Padhye R. Polypropylene-nanodiamond composite for hernia mesh. Mater Sci Engineering: C. 2020;111:110780.

    Article 
    CAS 

    Google Scholar
     

  • Steinerova M, Matejka R, Stepanovska J, Filova E, Stankova L, Rysova M, Martinova L, Dragounova H, Domonkos M, Artemenko A. Human osteoblast-like SAOS-2 cells on submicron-scale fibers coated with nanocrystalline diamond films. Mater Sci Engineering: C. 2021;121:111792.

    Article 
    CAS 

    Google Scholar
     

  • Kotteeswaran V, Saravanakumar M, Alexander RM, Nair RS, Ramnath KM. Advancement of nanofibers in wound healing: A review. Biomedical Pharmacol J. 2024;17(3):1407–31.

    Article 
    CAS 

    Google Scholar
     

  • Partovi A, Khedrinia M, Arjmand S. Ranaei Siadat, electrospun nanofibrous wound dressings with enhanced efficiency through carbon quantum Dots and citrate incorporation. Sci Rep. 2024;14(1):19256.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren S, Guo S, Yang L, Wang C. Effect of composite biodegradable biomaterials on wound healing in diabetes. Front Bioeng Biotechnol. 2022;10:1060026.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li R, Vedelaar T, Mzyk A, Morita A, Padamati SK, Schirhagl R. Following polymer degradation with nanodiamond magnetometry. ACS Sens. 2022;7(1):123–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahdavi M, Mahmoudi N, Rezaie Anaran F, Simchi A. Electrospinning of Nanodiamond-Modified polysaccharide nanofibers with Physico-Mechanical properties close to natural skins. Mar Drugs 14(7) (2016).

  • Gong H, Anasori B, Dennison CR, Wang K, Kumbur EC, Strich R, Zhou JG. Fabrication, biodegradation behavior and cytotoxicity of Mg-nanodiamond composites for implant application. J Mater Sci Mater Med. 2015;26(2):110.

    Article 
    PubMed 

    Google Scholar
     

  • Melnikov PV, Alexandrovskaya AY, Naumova AO, Popova NM, Spitsyn BV, Zaitsev NK, Yashtulov NA. Modified nanodiamonds as a means of polymer surface functionalization. From fouling suppression to biosensor design. Nanomaterials. 2021;11(11):2980.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belouhova MV, Yotinov ID, Topalova YI. Nanodiamonds improve Amaranth biodegradation in a lab-scale biofilter. Biotechnol Biotechnol Equip. 2023;37(1):317–28.

    Article 
    CAS 

    Google Scholar
     

  • Vittorazzi C, Endringer DC, Andrade TUd, Scherer R, Fronza M. Antioxidant, antimicrobial and wound healing properties of Struthanthus vulgaris. Pharm Biol. 2016;54(2):331–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Comino-Sanz IM, López-Franco MD, Castro B, Pancorbo-Hidalgo PL. The role of antioxidants on wound healing: A review of the current evidence. J Clin Med 10(16) (2021).

  • Bolshakova O, Lebedev V, Mikhailova E, Zherebyateva O, Aznabaeva L, Burdakov V, Kulvelis Y, Yevlampieva N, Mironov A, Miroshnichenko I, Sarantseva S. Fullerenes on a nanodiamond platform demonstrate antibacterial activity with low cytotoxicity. Pharmaceutics 15(7) (2023).

  • Li F-K, Zhao W-B, Wang Y, Huang W-T, Ku Y-L, Liu H, Guo R, Yu H-H, Liu K-K, Shan C-X. Cationic engineered nanodiamonds for efficient antibacterial surface with strong wear resistance. Nano Res. 2024;17(3):939–48.

    Article 
    CAS 

    Google Scholar
     

  • Chang B-M, Pan L, Lin H-H, Chang H-C. Nanodiamond-supported silver nanoparticles as potent and safe antibacterial agents. Sci Rep. 2019;9(1):13164.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wehling J, Dringen R, Zare RN, Maas M, Rezwan K. Bactericidal activity of partially oxidized nanodiamonds. ACS Nano. 2014;8(6):6475–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu X, Li W, Herlah L, Koch M, Wang H, Schirhagl R. M.K. Włodarczyk-Biegun, melt electrowritten poly-lactic acid/nanodiamond scaffolds towards wound-healing patches. Mater Today Bio. 2024;26:101112.

  • Khalid A, Bai D, Abraham AN, Jadhav A, Linklater D, Matusica A, Nguyen D, Murdoch BJ, Zakhartchouk N, Dekiwadia C. Electrospun nanodiamond–silk fibroin membranes: A multifunctional platform for biosensing and wound-healing applications. ACS Appl Mater Interfaces. 2020;12(43):48408–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conceição K, de Andrade VM, Trava-Airoldi V, Capote G. High antibacterial properties of DLC film doped with nanodiamond. Surf Coat Technol. 2019;375:395–401.

    Article 

    Google Scholar
     

  • Shen Y, Li Y, Wen Y, Yang R, Liu Y, Feng X, et al. Investigations into the antimicrobial behavior and cytotoxicity of purified detonation diamond nanoparticles and their assembled micro-/nano-structured films. Mater Lett. 2024;363:136294.

  • Zhang X, Wang Y, Gao Z, Mao X, Cheng J, Huang L, Tang J. Advances in wound dressing based on electrospinning nanofibers. J Appl Polym Sci. 2024;141(1):e54746.

    Article 
    CAS 

    Google Scholar
     

  • Guarino V, Cruz-Maya I, Reineck P, Abe H, Ohshima T, Fox K, Greentree AD, Gibson BC, Ambrosio L. Fluorescent nanodiamonds embedded in poly-ε-caprolactone fibers as biomedical scaffolds. ACS Appl Nano Mater. 2020;3(11):10814–22.

    Article 
    CAS 

    Google Scholar
     

  • Augustine R, Kalva SN, Dalvi YB, Varghese R, Chandran M, Hasan A. Air-jet spun tissue engineering scaffolds incorporated with diamond nanosheets with improved mechanical strength and biocompatibility. Colloids Surf B. 2023;221:112958.

    Article 
    CAS 

    Google Scholar
     

  • Houshyar S, Kumar GS, Rifai A, Tran N, Nayak R, Shanks RA, Padhye R, Fox K, Bhattacharyya A. Nanodiamond/poly-ε-caprolactone nanofibrous scaffold for wound management. Mater Sci Engineering: C. 2019;100:378–87.

    Article 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *