Paddle-like self-stirring nanoreactors with multi-chambered mesoporous branches for enhanced dual-dynamic cascade reactions


  • Fogg, D. E. & dos Santos, E. N. Tandem catalysis: a taxonomy and illustrative review. Coord. Chem. Rev. 248, 2365–2379 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, H. et al. Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion. Science 371, 1257–1260 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monai, M. et al. Propane to olefins tandem catalysis: a selective route towards light olefins production. Chem. Soc. Rev. 50, 11503–11529 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Pickering emulsion droplets and solid microspheres acting synergistically for continuous-flow cascade reactions. Nat. Catal. 7, 295–306 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zou, H. et al. Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nat. Commun. 12, 4968 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Distance for communication between metal and acid sites for syngas conversion. ACS Catal. 12, 8793–8801 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Y. et al. Remodeling nanodroplets into hierarchical mesoporous silica nanoreactors with multiple chambers. Nat. Commun. 13, 6136 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pei, C. & Gong, J. Tandem catalysis at nanoscale. Science 371, 1203–1204 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, K. R. G. et al. Nanoparticle proximity controls selectivity in benzaldehyde hydrogenation. Nat. Catal. 7, 172–184 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Nivina, A. et al. Evolution and diversity of assembly-line polyketide synthases. Chem. Rev. 119, 12524–12547 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shklyaev, O. E. & Balazs, A. C. Interlinking spatial dimensions and kinetic processes in dissipative materials to create synthetic systems with lifelike functionality. Nat. Nanotechnol. 19, 146–159 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. & Xu, D. Formation of yolk/SiO2 shell structures using surfactant mixtures as template. J. Am. Chem. Soc. 131, 2774–2775 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teng, Z. et al. A facile multi-interface transformation approach to monodisperse multiple-shelled periodic mesoporous organosilica hollow spheres. J. Am. Chem. Soc. 137, 7935–7944 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marguet, M., Bonduelle, C. & Lecommandoux, S. Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function. Chem. Soc. Rev. 42, 512–529 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schoonen, L. & van Hest, J. C. M. Compartmentalization approaches in soft matter science: from nanoreactor development to organelle mimics. Adv. Mater. 28, 1109–1128 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suteewong, T. et al. Multicompartment mesoporous silica nanoparticles with branched shapes: an epitaxial growth mechanism. Science 340, 337–341 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, F. et al. On demand synthesis of hollow fullerene nanostructures. Nat. Commun. 10, 1548 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, F. et al. Precise dimerization of hollow fullerene compartments. J. Am. Chem. Soc. 142, 15396–15402 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Y. et al. Synthesis of branched silica nanotrees using a nanodroplet sequential fusion strategy. Nat. Synth. 3, 236–244 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Z. et al. Ruthenium-nanoparticle-loaded hollow carbon spheres as nanoreactors for hydrogenation of levulinic acid: explicitly recognizing the void-confinement effect. Angew. Chem. Int. Ed. 60, 20786–20794 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wei, Y. et al. A universal formation mechanism of hollow multi-shelled structures dominated by concentration waves. Angew. Chem. Int. Ed. 62, e202302621 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Peters, R. J. R. W. et al. Cascade reactions in multicompartmentalized polymersomes. Angew. Chem. Int. Ed. 126, 150–154 (2014).

    Article 

    Google Scholar
     

  • Chong, W. et al. Stirring in suspension: nanometer-sized magnetic stir bars. Angew. Chem. Int. Ed. 125, 8732–8735 (2013).

    Article 

    Google Scholar
     

  • Yang, S. et al. Nanoscale magnetic stirring bars for heterogeneous catalysis in microscopic systems. Angew. Chem. Int. Ed. 127, 2699–2702 (2015).

    Article 

    Google Scholar
     

  • Zhou, X. et al. Enhancing reaction rate in a Pickering emulsion system with natural magnetotactic bacteria as nanoscale magnetic stirring bars. Chem. Sci. 9, 2575–2580 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Unconventional chain-growth mode in the assembly of colloidal gold nanoparticles. Angew. Chem. Int. Ed. 51, 8021–8025 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Spindle-shaped nanoscale yolk/shell magnetic stirring bars for heterogeneous catalysis in macro- and microscopic systems. Chem. Commun. 52, 1575–1578 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Co@C nanorods as both magnetic stirring nanobars and magnetic recyclable nanocatalysts for microcatalytic reactions. Appl. Catal. B 304, 120925 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ji, Q. et al. Scalable and continuous preparation of nano-stirbars by electrospinning. Chem. Commun. 56, 11767–11770 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Aubert, T. et al. Two-dimensional superstructures of silica cages. Adv. Mater. 32, 1908362 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Synthesis of podlike magnetic mesoporous silica nanochains for use as enzyme support and nanostirrer in biocatalysis. ACS Appl. Mater. Interfaces 12, 17901–17908 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan, L. et al. A magnetic-field guided interface coassembly approach to magnetic mesoporous silica nanochains for osteoclast-targeted inhibition and heterogeneous nanocatalysis. Adv. Mater. 30, 1707515 (2018).

    Article 

    Google Scholar
     

  • Ebensperger, P. et al. A dual-metal-catalyzed sequential cascade reaction in an engineered protein cage. Angew. Chem. Int. Ed. 62, e202218413 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Y. et al. Streamlined mesoporous silica nanoparticles with tunable curvature from interfacial dynamic-migration strategy for nanomotors. Nano Lett. 21, 6071–6079 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *