Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).
Jülicher, F., Ajdari, A. & Prost, J. Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1282 (1997).
Astumian, R. D. How molecular motors work—insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016. Chem. Sci. 8, 840–845 (2017).
Sauvage, J.-P. From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).
Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).
Feringa, B. L. The art of building small: from molecular switches to motors (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).
Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).
Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotechnol. 10, 70–75 (2015).
Guentner, M. et al. Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor. Nat. Commun. 6, 8406 (2015).
Cheng, C. et al. An artificial molecular pump. Nat. Nanotechnol. 10, 547–553 (2015).
Borsley, S., Kreidt, E., Leigh, D. A. & Roberts, B. M. W. Autonomous fueled directional rotation about a covalent single bond. Nature 604, 80–85 (2022).
Pumm, A.-K. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).
Zhang, L. et al. An electric molecular motor. Nature 613, 280–286 (2023).
Borsley, S., Leigh, D. & Roberts, B. M. W. Molecular ratchets and kinetic asymmetry: giving chemistry direction. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202400495 (2024).
Astumian, R. D. Kinetic asymmetry and directionality of nonequilibrium molecular systems. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202306569 (2024).
Wang, P.-L. et al. Transducing chemical energy through catalysis by an artificial molecular motor. Nature 637, 594–600 (2025).
Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).
Feng, Y. et al. Molecular pumps and motors. J. Am. Chem. Soc. 143, 5569–5591 (2021).
Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020).
Dattler, D. et al. Design of collective motions from synthetic molecular switches, rotors, and motors. Chem. Rev. 120, 310–433 (2020).
Moulin, E., Faour, L., Carmona‐Vargas, C. C. & Giuseppone, N. From molecular machines to stimuli‐responsive materials. Adv. Mater. 32, 1906036 (2020).
Perrot, A., Moulin, E. & Giuseppone, N. Extraction of mechanical work from stimuli-responsive molecular systems and materials. Trends Chem. 3, 926–942 (2021).
Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).
Pooler, D. R. S., Lubbe, A. S., Crespi, S. & Feringa, B. L. Designing light-driven rotary molecular motors. Chem. Sci. 12, 14964–14986 (2021).
Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A. & Feringa, B. L. Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc. 124, 5037–5051 (2002).
Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).
Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).
Perrot, A., Wang, W., Buhler, E., Moulin, E. & Giuseppone, N. Bending actuation of hydrogels through rotation of light‐driven molecular motors. Angew. Chem. Int. Ed. 62, e202300263 (2023).
Gao, C., Vargas Jentzsch, A., Moulin, E. & Giuseppone, N. Light-driven molecular whirligig. J. Am. Chem. Soc. 144, 9845–9852 (2022).
García-López, V. et al. Molecular machines open cell membranes. Nature 548, 567–572 (2017).
Wang, W.-Z. et al. Light-driven molecular motors boost the selective transport of alkali metal ions through phospholipid bilayers. J. Am. Chem. Soc. 143, 15653–15660 (2021).
Qutbuddin, Y. et al. Light‐activated synthetic rotary motors in lipid membranes induce shape changes through membrane expansion. Adv. Mater. https://doi.org/10.1002/adma.202311176 (2024).
Daou, D. et al. Out‐of‐equilibrium mechanical disruption of β‐amyloid‐like fibers using light‐driven molecular motors. Adv. Mater. https://doi.org/10.1002/adma.202311293 (2024).
Ariga, K., Yamauchi, Y., Mori, T. & Hill, J. P. 25th anniversary article: what can be done with the Langmuir–Blodgett method? Recent developments and its critical role in materials science. Adv. Mater. 25, 6477–6512 (2013).
Oliveira, O. N., Caseli, L. & Ariga, K. The past and the future of Langmuir and Langmuir–Blodgett films. Chem. Rev. 122, 6459–6513 (2022).
Ariga, K. Don’t forget Langmuir–Blodgett films 2020: interfacial nanoarchitectonics with molecules, materials, and living objects. Langmuir 36, 7158–7180 (2020).
Kim, I., Rabolt, J. F. & Stroeve, P. Dynamic monolayer behavior of a photo-responsive azobenzene surfactant. Colloids Surf. A 171, 167–174 (2000).
Backus, E. H. G., Kuiper, J. M., Engberts, J. B. F. N., Poolman, B. & Bonn, M. Reversible optical control of monolayers on water through photoswitchable lipids. J. Phys. Chem. B 115, 2294–2302 (2011).
Ando, E., Miyazaki, J., Morimoto, K., Nakahara, H. & Fukuda, K. J-aggregation of photochromic spiropyran in Langmuir–Blodgett films. Thin Solid Films 133, 21–28 (1985).
Nakazawa, T., Azumi, R., Sakai, H., Abe, M. & Matsumoto, M. Brewster angle microscopic observations of the langmuir films of amphiphilic spiropyran during compression and under UV illumination. Langmuir 20, 5439–5444 (2004).
Rossos, A. K. et al. Photochromism of amphiphilic dithienylethenes as Langmuir–Schaefer films. Langmuir 34, 10905–10912 (2018).
Karthaus, O., Shimomura, M., Hioki, M., Tahara, R. & Nakamura, H. Reversible photomorphism in surface monolayers. J. Am. Chem. Soc. 118, 9174–9175 (1996).
Cheng, J., Štacko, P., Rudolf, P., Gengler, R. Y. N. & Feringa, B. L. Bidirectional photomodulation of surface tension in Langmuir films. Angew. Chem. Int. Ed. 56, 291–296 (2017).
De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).
Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).
Roy, N., Schädler, V. & Lehn, J.-M. Supramolecular polymers: Inherently dynamic materials. Acc. Chem. Res. 57, 349–361 (2024).
Luviano, A. S., Campos-Terán, J., Langevin, D., Castillo, R. & Espinosa, G. Mechanical properties of DPPC–POPE mixed Langmuir monolayers. Langmuir 35, 16734–16744 (2019).
Pallas, N. R. & Pethica, B. A. Liquid-expanded to liquid-condensed transition in lipid monolayers at the air/water interface. Langmuir 1, 509–513 (1985).
Davies, J. T. & Rideal, E. K. Interfacial Phenomena (Academic Press, 1963).
Dervichian, D. G. Changes of phase and transformations of higher order in monolayers. J. Chem. Phys. 7, 931–948 (1939).
Carino, S. R. et al. Real-time grazing incidence X-ray diffraction studies of polymerizing n-octadecyltrimethoxysilane Langmuir monolayers at the air/water interface. J. Am. Chem. Soc. 123, 767–768 (2001).
Giuseppone, N. & Walther, A. Out‐of‐Equilibrium (Supra)molecular Systems and Materials (Wiley, 2021); https://doi.org/10.1002/9783527821990