Supramolecular polymerization through rotation of light-driven molecular motors


  • Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jülicher, F., Ajdari, A. & Prost, J. Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1282 (1997).

    Article 

    Google Scholar
     

  • Astumian, R. D. How molecular motors work—insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016. Chem. Sci. 8, 840–845 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sauvage, J.-P. From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Feringa, B. L. The art of building small: from molecular switches to motors (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotechnol. 10, 70–75 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guentner, M. et al. Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor. Nat. Commun. 6, 8406 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, C. et al. An artificial molecular pump. Nat. Nanotechnol. 10, 547–553 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borsley, S., Kreidt, E., Leigh, D. A. & Roberts, B. M. W. Autonomous fueled directional rotation about a covalent single bond. Nature 604, 80–85 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pumm, A.-K. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. An electric molecular motor. Nature 613, 280–286 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borsley, S., Leigh, D. & Roberts, B. M. W. Molecular ratchets and kinetic asymmetry: giving chemistry direction. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202400495 (2024).

    Article 

    Google Scholar
     

  • Astumian, R. D. Kinetic asymmetry and directionality of nonequilibrium molecular systems. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202306569 (2024).

  • Wang, P.-L. et al. Transducing chemical energy through catalysis by an artificial molecular motor. Nature 637, 594–600 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Y. et al. Molecular pumps and motors. J. Am. Chem. Soc. 143, 5569–5591 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dattler, D. et al. Design of collective motions from synthetic molecular switches, rotors, and motors. Chem. Rev. 120, 310–433 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moulin, E., Faour, L., Carmona‐Vargas, C. C. & Giuseppone, N. From molecular machines to stimuli‐responsive materials. Adv. Mater. 32, 1906036 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Perrot, A., Moulin, E. & Giuseppone, N. Extraction of mechanical work from stimuli-responsive molecular systems and materials. Trends Chem. 3, 926–942 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pooler, D. R. S., Lubbe, A. S., Crespi, S. & Feringa, B. L. Designing light-driven rotary molecular motors. Chem. Sci. 12, 14964–14986 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A. & Feringa, B. L. Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc. 124, 5037–5051 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perrot, A., Wang, W., Buhler, E., Moulin, E. & Giuseppone, N. Bending actuation of hydrogels through rotation of light‐driven molecular motors. Angew. Chem. Int. Ed. 62, e202300263 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gao, C., Vargas Jentzsch, A., Moulin, E. & Giuseppone, N. Light-driven molecular whirligig. J. Am. Chem. Soc. 144, 9845–9852 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-López, V. et al. Molecular machines open cell membranes. Nature 548, 567–572 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, W.-Z. et al. Light-driven molecular motors boost the selective transport of alkali metal ions through phospholipid bilayers. J. Am. Chem. Soc. 143, 15653–15660 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qutbuddin, Y. et al. Light‐activated synthetic rotary motors in lipid membranes induce shape changes through membrane expansion. Adv. Mater. https://doi.org/10.1002/adma.202311176 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Daou, D. et al. Out‐of‐equilibrium mechanical disruption of β‐amyloid‐like fibers using light‐driven molecular motors. Adv. Mater. https://doi.org/10.1002/adma.202311293 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Ariga, K., Yamauchi, Y., Mori, T. & Hill, J. P. 25th anniversary article: what can be done with the Langmuir–Blodgett method? Recent developments and its critical role in materials science. Adv. Mater. 25, 6477–6512 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliveira, O. N., Caseli, L. & Ariga, K. The past and the future of Langmuir and Langmuir–Blodgett films. Chem. Rev. 122, 6459–6513 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ariga, K. Don’t forget Langmuir–Blodgett films 2020: interfacial nanoarchitectonics with molecules, materials, and living objects. Langmuir 36, 7158–7180 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, I., Rabolt, J. F. & Stroeve, P. Dynamic monolayer behavior of a photo-responsive azobenzene surfactant. Colloids Surf. A 171, 167–174 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Backus, E. H. G., Kuiper, J. M., Engberts, J. B. F. N., Poolman, B. & Bonn, M. Reversible optical control of monolayers on water through photoswitchable lipids. J. Phys. Chem. B 115, 2294–2302 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ando, E., Miyazaki, J., Morimoto, K., Nakahara, H. & Fukuda, K. J-aggregation of photochromic spiropyran in Langmuir–Blodgett films. Thin Solid Films 133, 21–28 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Nakazawa, T., Azumi, R., Sakai, H., Abe, M. & Matsumoto, M. Brewster angle microscopic observations of the langmuir films of amphiphilic spiropyran during compression and under UV illumination. Langmuir 20, 5439–5444 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossos, A. K. et al. Photochromism of amphiphilic dithienylethenes as Langmuir–Schaefer films. Langmuir 34, 10905–10912 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karthaus, O., Shimomura, M., Hioki, M., Tahara, R. & Nakamura, H. Reversible photomorphism in surface monolayers. J. Am. Chem. Soc. 118, 9174–9175 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, J., Štacko, P., Rudolf, P., Gengler, R. Y. N. & Feringa, B. L. Bidirectional photomodulation of surface tension in Langmuir films. Angew. Chem. Int. Ed. 56, 291–296 (2017).

    Article 
    CAS 

    Google Scholar
     

  • De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy, N., Schädler, V. & Lehn, J.-M. Supramolecular polymers: Inherently dynamic materials. Acc. Chem. Res. 57, 349–361 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luviano, A. S., Campos-Terán, J., Langevin, D., Castillo, R. & Espinosa, G. Mechanical properties of DPPC–POPE mixed Langmuir monolayers. Langmuir 35, 16734–16744 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pallas, N. R. & Pethica, B. A. Liquid-expanded to liquid-condensed transition in lipid monolayers at the air/water interface. Langmuir 1, 509–513 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Davies, J. T. & Rideal, E. K. Interfacial Phenomena (Academic Press, 1963).

  • Dervichian, D. G. Changes of phase and transformations of higher order in monolayers. J. Chem. Phys. 7, 931–948 (1939).

    Article 
    CAS 

    Google Scholar
     

  • Carino, S. R. et al. Real-time grazing incidence X-ray diffraction studies of polymerizing n-octadecyltrimethoxysilane Langmuir monolayers at the air/water interface. J. Am. Chem. Soc. 123, 767–768 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giuseppone, N. & Walther, A. Out‐of‐Equilibrium (Supra)molecular Systems and Materials (Wiley, 2021); https://doi.org/10.1002/9783527821990

  • Leave a Reply

    Your email address will not be published. Required fields are marked *